Перевод: с русского на английский

с английского на русский

(между многими)

  • 1 связь между переменными

    Универсальный русско-английский словарь > связь между переменными

  • 2 связь пункта со многими пунктами

    1. point-to-multipoint communication

     

    связь пункта со многими пунктами
    Связь, обеспечиваемая линиями, например радиорелейными, между одной станцией, расположенной в определенном фиксированном пункте, и рядом станций, расположенных в определенных фиксированных пунктах. (МСЭ-R F.592-3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > связь пункта со многими пунктами

  • 3 система связи пункта со многими пунктами

    1. point-to-multipoint system
    2. P-MP system

     

    система связи пункта со многими пунктами
    Система, обеспечивающая соединение между одним конкретным пунктом и более чем одним другим конкретным пунктом (МСЭ-R F.1399).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > система связи пункта со многими пунктами

  • 4 со многими атрибутами

    Универсальный русско-английский словарь > со многими атрибутами

  • 5 со многими атрибутами

    Русско-английский словарь по вычислительной технике и программированию > со многими атрибутами

  • 6 корреляционный анализ (в экономике)

    1. correlation analysis

     

    корреляционный анализ (в экономике)
    Ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция — соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная, когда зависимость связанных величин искажена влиянием посторонних, дополнительных факторов. Примером функциональной связи служит выпуск и потребление продукции, когда она дефицитна: во сколько раз больше выпуск, во столько раз больше продажа (все распродается, ничего не остается в запасе). Примером корреляционной связи может служить соотношение стажа рабочих и их производительности труда. Известно, что в среднем производительность труда рабочих тем выше, чем больше их стаж. Однако бывает, и нередко, что молодой рабочий (из-за влияния таких дополнительных факторов, как образование, здоровье и т.д.) работает лучше пожилого. Чем больше влияние этих дополнительных факторов, тем менее тесна связь между стажем и выработкой, и наоборот. В таком случае коэффициент корреляции (см. Корреляция) между двумя величинами — стажем и производительностью — занимает промежуточное положение между нулем и единицей в зависимости от силы (тесноты) взаимосвязи. Именно такие взаимосвязи изучает К.а. Он может рассматривать и более сложные корреляционные связи — не между двумя переменными (это называется парной корреляцией), как в описанном случае, а между многими. Тогда имеют дело с множественной корреляцией. При изучении экономических явлений методами К.а. необходимо тщательно выявлять причинные зависимости, лежащие в основе корреляции наблюдаемых показателей. Отсутствие причинной связи между явлениями, хотя корреляционная связь между ними установлена, называется ложной корреляцией. Она часто встречается, например, при анализе временных рядов, когда параллельно снижаются или повышаются показатели, на самом деле совершенно не зависящие друг от друга. Рассматриваемые связи математически описываются корреляционными уравнениями (другое название — уравнение регрессии). Например, простейшим корреляционным уравнением связи между двумя переменными является уравнение прямой вида y=a+bx. При функциональной связи такая прямая точно соответствовала бы действительным значениям зависимой переменной. Если представить такую связь графически, то она проходила бы через все наблюдаемые точки y. При корреляции же соответствие, как указано, соблюдается лишь приблизительно, в общем, и точки наблюдений расположены не по прямой, а в виде «облачка», более или менее вытянутого в некотором направлении. Поэтому приходится специальными приемами находить ту линию, которая наилучшим образом отражает корреляционную зависимость, т.е. направление «облачка» (рис.К.1). Распространенный способ решения этой задачи — метод наименьших квадратов отклонений наблюдаемых значений y от значений, рассчитываемых по формуле корреляционного уравнения. Особенно широко применяется К.а. в теории производственных функций, в разработке разного рода нормативов на производстве, а также в анализе спроса и потребления. Рис. К.1 Корреляционные зависимости а — переменные x и y не коррелируют; б — слабая отрицательная корреляция; в — сильная положительная линейная корреляция
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > корреляционный анализ (в экономике)

  • 7 рассредоточивать владение акциями

    Универсальный русско-английский словарь > рассредоточивать владение акциями

  • 8 распределение

    с.
    1) (назначение, раздача между многими) distribution

    распределе́ние нало́гов — assessment

    боево́е распределе́ние воен.battle organization

    распределе́ние роле́й — casting

    распределе́ние выпускнико́в — placement of graduates

    получи́ть рабо́ту по распределе́нию — be placed on a job

    3) (классификация, разделение по категориям) distribution, breakdown

    распределе́ние по возрастны́м гру́ппам — age group distribution

    Новый большой русско-английский словарь > распределение

  • 9 MCU

    Англо-русский словарь промышленной и научной лексики > MCU

  • 10 multiuser compatibility

    Англо-русский словарь промышленной и научной лексики > multiuser compatibility

  • 11 активный многоадресный контроллер

    1. active мulticast сontroller
    2. active MC

     

    активный многоадресный контроллер
    Многоадресный контроллер (MC), который в данное время выполняет функции управления сеансом связи между многими пунктами для обеспечения работы телеконференции (МСЭ-Т Н.323).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > активный многоадресный контроллер

  • 12 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 13 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 14 генитальность

    Психические свойства, феномены и представления, связанные с гениталиями. Аналогично терминам анальность и оральность, генитальность является широким, общим понятием. В теории либидо утверждается последовательное доминирование сексуальных зон (оральной, анальной, уретральной, фаллической), чему соответствуют определенные формы организации Я, рассматриваемые как стадии. Эти стадии представляют собой теоретические конструкты, относящиеся к развитию, и их нельзя смешивать с чувственным функционированием.
    Генитальная стадия — это заключительная стадия инстинктивного либидинозного развития. Предыдущие фазы и их конфликты интегрируются и соподчиняются соответственно генитальной ориентации, представляя новообразование, именуемое "приматом генитальности", или психосексуальную зрелость. Фиксации и регрессии к более ранним стадиям препятствуют достижению примата генитальности и функционированию, соответствующему генитальной фазе.
    Продуктивность использования понятия примата генитальности в теоретических построениях и в клинике оспаривалась многими авторами.
    Росс (1970), Березин (Panel, 1969) и Лихтенштейн (1970) отвергают все определения примата генитальности, отождествляющие его лишь с оргазмическим функционированием. Способность к оргазму часто бывает никак не связана со зрелостью объектных отношений и возможностями Я. В клинике нередки случаи, когда сексуальное генитальное функционирование сопровождается оргазмом, служащим прежде всего оральным или анальным целям. Сарлин (1970) дополнил представление о примате генитальности идеями, разработанными позже в психологии Я, в частности, представлениями о кризисах развития, зрелости идентификаций, контроле над либидинозными и агрессивными влечениями, процессах нейтрализации и сублимации. Этот взгляд разделяет Кернберг (1977). Обсуждая проблему любви, он говорит о "нормальной интеграции генитальности со способностью к нежности и стабильным, глубоким объектным отношениям (с. 82). Разработанная Фрейдом теория либидо основывалась на реконструкции данных, полученных при анализе взрослых. Данные аналитиков, работающих с детьми и подростками, полученные непосредственно от детей, являются более точными с точки зрения хронологии развития и определения подфаз. Дополнительные данные, вынуждающие к изменению исходных формулировок Фрейда, связаны 1) с непосредственными наблюдениями над детьми, 2) с современными разработками психологии Я и теории объектных отношений и 3) с психологией нарциссизма и Самости.
    Эриксон (1950) предполагает существование ранней бисексуальной диспозиции у представителей обоих полов; он считает, что полная дифференциация генитальных модусов — "мужского вторжения" и "женского принятия" — возможна лишь в пубертате. Поэтому он предлагает заменить термин инфантильная генитальная стадия, предполагающий сочетание модусов и модальностей вторжения и принятия, более привычным — фаллическая фаза.
    Кестенберг (1968) говорит о наличии ранней инфантильной внутренней генитальной фазы, в которой генитальные ощущения внутри тела вызывают тревогу, ведущую к экстернализации этих ощущений на поверхность тела или внешние предметы, например куклу. Эта фаза предшествует фаллической. В пубертатный период внутренняя генитальная фаза завершается, поскольку все компонентные влечения, включая фаллические, интегрируются в специфический для каждого пола примат генитальности.
    Пэренс (1980) считает, что термин фаллическая фаза характеризует первичный мужской тип развития как первичный, и предлагает термин первая инфантильная генитальная фаза для обозначения периода между 24 до 36 месяцами. Этот термин согласуется с представлением о том, что мальчики и девочки развиваются на основе, соответственно, ранней первичной маскулинности или фемининности.
    Ройф (1968) описывает раннюю генитальную фазу, характеризующую развитие как мальчиков, так и девочек между пятнадцатым и девятнадцатым месяцами жизни. Согласно наблюдениям, в этой фазе дети регулярно стимулируют гениталии — либо непосредственно (рукой или предметом), либо косвенно (посредством раскачивания, сжимания бедер и т.д.). Он пришел к выводу, что генитальный катексис и осознание генитальных различий между мальчиками и девочками возникают раньше, чем считалось до этого. Наблюдения показали, что дети делают различие между гениталиями и органами выделения, хотя незрелость образа тела препятствует высокому уровню дифференциации. Девочки, по-видимому, придерживаются единого представления об этой области как о клоаке, которое может сохраняться до подросткового возраста (Shopper, 1979). Таким образом, определение того, что является "гениталиями", зависит от степени отчетливости и дифференцированности образа тела.
    \
    Лит.: [189, 256, 493, 498, 561, 660, 678, 730, 737, 754, 780]

    Словарь психоаналитических терминов и понятий > генитальность

  • 15 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 16 Сверх-Я

    = супер-эго
    Одна из трех гипотетических систем трехкомпонентной (структурной) модели психики — Сверх-Я — обеспечивает и поддерживает сложный конгломерат идеалов, ценностей, запретов и приказаний (совесть). Сверх-Я осуществляет функции "слежения" за Самостью и сопоставления его с идеалами, оно или критикует и наказывает, что сопровождается различными болезненными аффектами, или вознаграждает и тем самым повышает самооценку. Термин Сверх-Я (Über-Ich) введен Фрейдом в 1923 году. Вначале он использовался как синоним более раннего понятия Я-идеал (Ich-Ideal) и описывался как ступень на пути дифференциации Я. Фрейд рассматривал его как большей частью бессознательный феномен, соответствующий клиническому наблюдению, что многими пациентами самокритика и совесть не осознавались точно так же, как и влечения: "...Не только самое низменное, но и самое возвышенное в Я может быть бессознательным".
    Хотя Сверх-Я рассматривается как некая абстракция, обладающая относительно стабильными функциями и более или менее связной конфигурацией (или структурой), его дериваты можно легко обнаружить в феноменах, метафорически описываемых как внутренний голос, внутренний авторитет или внутренний судья. Эти персонифицированные внутренние образования привели к появлению таких знакомых терминов, как внутренние объекты, внутренние объектные отношения и интроекты. Эти обозначения во многом объясняются чувствующимся разделением, существующим между Сверх-Я и остальной личностью. Такое разделение, по-видимому, является следствием конфликта между Сверх-Я и Я, сопровождающегося болезненными чувствами собственной неполноценности, стыда и вины.
    Фрейд полагал, что Сверх-Я развивается на основе ранней идентификации с родителями, когда те утрачивают качество объектов сексуальной любви, то есть в период "крушения эдипова комплекса". Он называл Сверх-Я, или Я-идеал, "законным наследником" эдипова комплекса и поэтому описывал его как репрезентант наиболее интенсивных переживаний любви в раннем детстве. Однако он добавлял, что Сверх-Я — это не просто остаток или осадок былого объекта любви, оно приводит также к появлению реактивных образований в ответ на такую идентификацию. Сверх-Я содержит две посылки: "ты должен быть таким" и "ты не можешь быть таким". Кроме того, Сверх-Я ребенка может формироваться скорее на основе Сверх-Я родителей, чем на основе воспринимаемого образа родителя. Фрейд полагал также, что суровость и жесткость Сверх-Я зависит не столько от суровости родителей, сколько от удельного веса агрессивных желаний индивида. Так, он отмечал (с. 54): "...чем более человек контролирует свою агрессивность, тем более интенсивной становится склонность его идеалов к агрессии против Я (или в аспекте динамики: агрессия обращается против собственной персоны)".
    Фрейд (1923) отмечает, что Сверх-Я появляется в ходе попыток разрешить эдипов конфликт. Мальчик, опасаясь кастрации, отказывается от эдиповых инцестуозных желаний и идентифицируется с отцом/идеалом и моральными желаниями отца. Более ранние угрозы — утраты объекта, утраты любви и кастрации — интернализируются в виде специфических угроз со стороны Сверх-Я. Фрейд понимал женское Сверх-Я значительно хуже. Сегодня, однако, многие проводят различия между мужским и женским Сверх-Я на основе их содержаний (идеалов и запретов), но не на основе превосходства или неполноценности структуры.
    Многие авторы исследовали архаические доэдиповы стадии развития Сверх-Я (Jacobson, 1964; Reich, 1954; Sandler, 1960; Tyson and Tyson, 1984). Работа с маленькими детьми убеждает в том, что интернализация родительских ожиданий происходит у них задолго до эдиповой фазы. Хотя вначале они направлены против других (A. Freud, 1936), эти ожидания вскоре трансформируются и приобретают форму ожиданий от себя и самокритики при нарушении идеальных норм. Вместе с тем эдипов комплекс обеспечивает необходимый толчок для интеграции ранних стадий для формирования Сверх-Я. Ребенок начинает бояться утратить любовь Сверх-Я больше, чем любовь родителей. Наказание переживается как чувство вины, сопровождающееся потерей самоуважения; именно это и является отличительным признаком Сверх-Я (Beres, 1958).
    По завершении эдиповой фазы функции Сверх-Я постепенно становятся все менее персональными и приобретают все большую автономию от внешних объектов. Хотя Сверх-Я становится относительно устойчивой, упорядоченной системой, его дефекты или лакуны обусловлены нестабильностью функционирования или защитами (такими, как отрицание, обращение пассивного в активное и реэкстернализация) против отдельных частей Сверх-Я. Таким образом, Сверх-Я остается "...отнюдь не единой, когерентной, интегрированной, гармоничной структурой... а массой противоречий" (Arlow, 1982).
    \
    Лит.: [42, 68, 225, 303, 315, 333, 432, 451, 715, 746, 847]

    Словарь психоаналитических терминов и понятий > Сверх-Я

  • 17 теория Фэйрбейрна

    Теоретическая система Рональда Фэйрбейрна основана на клинических исследованиях сновидений и работе с истерическими и шизоидными больными. В основе патологии последних он обнаружил травматические переживания ребенка, которые заставляют его чувствовать себя нелюбимым. Когда врожденные стремления к взаимодействию, особенно те, что основаны на инкорпоративных желаниях, не находят ответа, эти дети начинают чувствовать, что их любовь была плохой или никчемной. Депривация не только усиливает их оральные потребности, но и придает им агрессивное качество, а фрустрация, вызванная отсутствием материнской любви, становится причиной восприятия этими пациентами своей любви как требовательной и агрессивной. В результате они отказываются от спонтанных отношений с матерью и чересчур погружаются во "внутренний мир", тем самым расщепляя Эго на две части — взаимодействующую с внешними фигурами и связанную с внутренними объектами.
    Мелани Кляйн, работы которой во многом повлияли на взгляды Фэйрбейрна, в свое время постулировала существование первой критической фазы развития ребенка, когда тот начинает защищать интернализированную им мать от деструктивных импульсов, исходящих от влечения к смерти. Эту фазу, характеризующуюся тревогой по поводу утраты хорошего объекта, Кляйн назвала депрессивной позицией. Фэйрбейрн считал, что в этой фазе ребенок должен достигнуть уровня структурированной внутренней безопасности, тесно связанной с образом хорошей матери. Усиление тревоги обусловлено не столько утратой хорошего объекта, сколько угрозой потери зарождающейся Самости, то есть дезинтеграции на фрагменты, эквивалентной смерти или сумасшествию. Заимствовав термин Кляйн, Фэйрбейрн предложил называть эту первую критическую фазу шизоидной позицией. Тесно связанные между собой, депрессивная и шизоидная позиции рассматриваются им как источник дефектов развития, угрожающих формированию Эго. Разделяя взгляды Кляйн относительно сведения всех компонентов развития к этим двум ранним позициям, Фэйрбейрн, однако, не принял ее концепцию влечения к смерти. Он в большей степени делал акцент на факторах внешней среды, а именно на качестве материнской любви и заботы как решающих для раннего развития.
    Фэйрбейрн пришел к выводу, что теория либидо должна быть заменена теорией, основанной на сугубо психологических факторах отношений с матерью, а затем и с отцом, а не на гипотетических инстинктивных энергиях и зональной разрядке напряжения. То есть Фэйрбейрн утверждал, что основное внимание психоаналитик должен уделять не трансформациям инстинкта, а событиям в рамках отношений зависимости от других, без которых развитие невозможно.
    Клинические наблюдения позволили Фэйрбейрну разработать собственную концепцию, названную им теорией объектных отношений личности. Его модификация психоанализа включает два существенных отступления от Фрейда. Во-первых, Фэйрбейрн понимал Эго как структуру, существующую с самого рождения, а не как развивающуюся из Ид в результате его отношений с реальностью. Эго располагает собственной энергией, не заимствованной из Ид. Эта идея соответствовала представлениям современной физики, согласно которым энергия не мыслится вне структуры или материи. Рассматривая либидо как функцию Эго, а агрессию как реакцию на фрустрацию или депривацию, Фэйрбейрн обходится без понятия независимого Ид.
    Второе отступление Фэйрбейрна касается самой энергии, для обозначения которой он оставляет лишь прежнее название "либидо". В его концепции Эго направлено не на поиск удовольствия, как у Фрейда, а на поиск объекта. Цель либидо, согласно Фэйрбейрну, состоит не в ослаблении напряжения, а в установлении удовлетворительных взаимоотношений. Поэтому, будучи нацеленным на удовлетворение базальной человеческой потребности — отношений с другими, — ребенок с самого рождения ориентируется на окружающую реальность. Это положение соответствует современным биологическим концепциям, согласно которым организм ребенка представляет собой функциональную целостность, существующую в специфических условиях внешней среды. Фэйрбейрн оспаривает точку зрения Фрейда об активации ребенка инстинктами или другими силами, связанными с эротогенными зонами. Ребенок прежде всего ориентирован на мать, достижению удовлетворительных отношений с которой служат эротогенные зоны. Они, следовательно, являются не более чем "техническими средствами" или "каналами", необходимыми для выражения либидинозных потребностей ребенка в его отношениях с объектами, а не источником либидинозных стимулов или первичными детерминантами либидинозных целей.
    Постепенно Фэйрбейрн разработал модель психической структуры. Используя концепцию Кляйн о внутреннем мире воображаемых отношений, он разработал системный теоретический подход к изучению нормального развития и формирования патологических состояний, представленный в терминах динамических структур Самости. Структурная модель Ид — Эго — Супер-Эго заменена им на базисную эндопсихическую структуру, единую, всеобъемлющую психическую структуру, для обозначения которой он сохранил термин "Эго". Будучи источником энергии, Эго с самого начала ориентировано на внешнюю реальность и установление отношений с первичным объектом — грудью матери. Развитие психической структуры происходят постепенно — от чистого Эго через процессы интернализации, расщепления и вытеснения материнского объекта.
    Неизбежные неудовлетворенность и фрустрация во взаимоотношениях ребенка с матерью, особенно связанные с сепарацией, приводят к интернализации объекта, одновременно и удовлетворяющего, и не удовлетворяющего. Реакция ребенка амбивалентна, возникает тревога, чувство безопасности нарушено, появляются защитные действия. Расщепление, которое Фэйрбейрн рассматривал как универсальный психический феномен, необходимый для того, чтобы справиться с фрустрацией и чрезмерным возбуждением ранних человеческих отношений, является нормативным (хотя иногда и патологическим) защитным механизмом, способствующим дифференциации и организации Эго (Самости). Доступные объективации аспекты объекта отщепляются и вытесняются, образуя внутренний мир. Одни внутренние объекты репрезентируют людей в целом, другие — такие части, как грудь или пенис. Эти целостные или частичные объекты могут вытесняться или проецироваться на внешние объекты. Наиболее выраженные качества предшествующей, недифференцированной структуры репрезентации объектов, называемой исходным объектом, расщепляются на два парциальных "плохих" объекта — отвергающий объект, то есть фрустрирующий или преследующий, и возбуждающий объект, то есть привлекающий к себе, соблазнительный (доэдипов материнский парциальный объект, грудь, и эдипов объект, пенис, отец, регрессивно воспринимаемый как парциальный объект). Остающееся ядро является десексуализированным, оно включает в себя идеальный объект, то есть изначально интернализированные как комфортные и удовлетворяющие аспекты груди. Исходный объект включает в себя любовь и ненависть ребенка. В дальнейшем он разделяется на принятый объект (прежний термин для обозначения идеального объекта) и отвергнутый объект; интернализированный плохой объект с двумя компонентами или дополнительными объектами — возбуждающим и отвергающим — подвергается вытеснению со стороны центрального Эго. В своих ранних работах Фэйрбейрн рассматривал принятый (идеальный) объект как "ядро Супер-Эго".
    Фэйрбейрн считал Эго либидинозно привязанным к объектам; поэтому расщепление объекта предполагает расщепление частей Эго, которые с ним связаны. Внутренний мир ребенка в конце концов достигает более или менее стабильного состояния, в котором Эго связано с множеством внутренних объектов. Со временем из исходного, или неразделенного, Эго развивается трехкомпонентная структура.
    1. Центральное Эго — "остаток неразделенного Эго", выполняющее функцию вытеснения. Фэйрбейрн называл его "Я", подразумевая, что оно объединяет бессознательные, предсознательные и сознательные элементы, хотя он подчеркивал его сознательную природу. Ринсли (1982) считает его аналогом фрейдовского реального Я и подчеркивает его сходную с объектом природу.
    2. Либидинозное Эго представляет собой отщепленную и вытесненную часть исходного Эго, вступающего в либидинозные отношения с возбуждающим объектом. Фэйрбейрн понимал эту часть как аналог классического Оно. Ринсли сравнивает либидинозное Эго с фрейдовским ректифицированным Я-удовольствием.
    3. Антилибидинозное Эго (первоначальное называвшееся внутренним саботажником) является отщепленной и вытесненной частью исходного Эго, вступающего в либидинозные отношения с отвергающим объектом. Отождествленное с агрессивным родителем, антилибидинозное Эго представляет собой предшественника более поздней структуры, которая сливается со сдерживающими аспектами того, что Фрейд понимал как Я-идеал и Сверх-Я. В отличие от постулированных Фрейдом структур, антилибидинозное Эго порождает страх, но не чувство вины.
    Таким образом, Сверх-Я Фрейда рассматривается Фэйрбейрном как "комплексная структура, включающая в себя а) идеальный объект или Эго-идеал; б) антилибидинозное Эго и в) отвергающий (антилибидинозный) объект" (1963, с. 224). То, что он называл моральной защитой, являлось попыткой со стороны Супер-Эго сохранить хорошие объектные отношения с плохими объектами, вынуждая к интернализации отщепленного (фрустрирующего и возбуждающего) объекта.
    Раннее расщепление может модифицироваться или интенсифицироваться родительскими установками. Фэйрбейрн считал эту структуру универсальным паттерном процессов развития и назвал базальной эндопсихической ситуацией, имея в виду не что иное, как шизоидную позицию. Она возникает вследствие "агрессивной установки" центрального Эго по отношению к либидинозному и антилибидинозному Эго, которые оно отщепляет от Самости и вытесняет. Фэйрбейрн не признает первичность эдипова комплекса, который, согласно его теории, является производным от более ранних структур.
    Фэйрбейрн определяет вытеснение либо как непосредственное, либо как косвенное. Первое состоит в "установке отвержения" со стороны центрального Эго в отношении возбуждающего и отвергающего объектов, а затем в отношении присоединяющихся к ним либидинозного и антилибидинозного Эго. Косвенное вытеснение представляет собой "бескомпромиссную враждебную установку [антилибидинозного Эго] в отношении либидинозного Эго" и связанного с ним возбуждающего объекта. Дополнительные объекты (отвергающий и возбуждающий) и дополнительные Эго (либидинозное и антилибидинозное) вытесняются и поэтому являются бессознательными, однако Фэйрбейрн не поясняет, каким образом вытесненные (то есть отщепленные) психические содержания становятся бессознательными. Более того, вытеснение и расщепление рассматриваются по сути как один и тот же процесс.
    Фэйрбейрн заменяет предложенную Абрахамом схему либидинозного развития и его фаз (оральная, анальная, фаллическая) моделью развития объектных отношений, основанной на трансформации зависимости от матери. Он постулирует следующие три стадии.
    1-я стадия, стадия инфантильной зависимости, знаменуется абсолютной, неизбежной зависимостью от материнской груди как от биологического объекта, с которым вступает в отношения рот ребенка. Однако доминирующая установка инкорпорации характеризует эту стадию в большей степени, чем либидинозный катексис рта, выражающийся в интернализации груди. Эта стадия включает в себя первичную идентификацию, под которой Фэйрбейрн понимал нечто сходное со слиянием с объектом, пока еще не полностью дифференцированным от Самости. Таким образом, инфантильная зависимость, первичная идентификация и нарциссизм, согласно Фэйрбейрну, взаимосвязаны. Эта стадия подразделяется на раннюю оральную (доамбивалентную) фазу, связанную непосредственно с материнской грудью (как парциальным объектом), и позднюю оральную (амбивалентную) фазу, связанную с образом "матери с грудью", то есть с целостным объектом, воспринимаемым как парциальный.
    2-я стадия, стадия псевдонезависимости, представляет собой длительную промежуточную или переходную стадию, не имеющую специфического, естественного биологического объекта. Ребенок устанавливает более прочные отношения с внешними объектами, которые постепенно становятся все более дифференцированными, и организует свой внутренний мир с помощью внутренних репрезентантов объектов. Эту стадию характеризуют различение, принятие и отвержение. Весь объект воспринимается как телесные содержания, при этом "плохие" части объекта отторгаются. Именно поэтому, согласно Фэйрбейрну, данная стадия окрашена "экскреторными" установками, но не из-за либидинозного катексиса ануса или фекалий.
    Фэйрбейрн обнаружил, что все его шизоидные пациенты на одной и той же стадии анализа проявляли паттерны основных психоневрозов в качестве средств защиты против угрозы потери Самости. Поэтому он считал, что психоневроз не следует рассматривать в качестве патологических образований, имеющих специфический источник в одной из фаз развития либидо. Вместо этого он рассматривал их как присущие переходной стадии способы интернализации и экстернализации, возникающие вследствие общих семейных паттернов. Эти способы позволяют ребенку регулировать или "обходиться" с принятым или отвергнутым объектом и отказываться от отношений первой, оральной, стадии в пользу отношений, основанных на дифференцированных объектах. Если же эти способы сохраняются в последующей жизни, они превращаются в патологические механизмы предотвращения регрессии к шизоидным и депрессивным состояниям и проявляются в фобическом, истерическом, обсессивном и паранойяльном поведении.
    3-я стадия, стадия зрелой независимости, отражает достижение полной дифференциации Самости и объекта, а также отношений "брать и давать" с целостными объектами. Естественным биологическим объектом являются гениталии неинцестуозного партнера (таким образом, эта стадия соответствует классической концепции генитальности). Вместе с тем характерной особенностью этой стадии является установка шеринга и кооперации между равноценными индивидами, а биологический аспект является лишь частью целостных взаимоотношений.
    К заслугам Фэйрбейрна следует отнести также введение в психоаналитическую теорию принципа объектных отношений, который, по мнению некоторых аналитиков, является более прогрессивным, нежели фрейдовская схема, основанная на представлениях прошлого столетия о свободных энергиях как силах, независимых от структуры. Концепции Фэйрбейрна возникли во многом под влиянием представлений Мелани Кляйн. Однако он разработал самостоятельную систему взглядов, значение которой все более подчеркивалось многими исследователями, в частности Кернбергом, Ринсли и др., занимавшимися изучением и терапией психических расстройств, считавшихся прежде неподвластными психоанализу. Взгляды Фэйрбейрна были расширены и дополнены Гантрипом (1961), сумевшим с помощью клинических наблюдений подтвердить концепцию Фэйрбейрна и сделать ее необычайно емкое изложение более понятным.
    \
    Лит.: [197, 198, 381, 397, 398, 494, 724]

    Словарь психоаналитических терминов и понятий > теория Фэйрбейрна

  • 18 динамическое программирование

    1. dynamic programming
    2. DP

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > динамическое программирование

  • 19 амилазы

    [греч. amylon — крахмал]
    ферменты класса гидролаз (см. гидролазы), катализирующие гидролиз резервных полисахаридов (крахмал у растений и гликоген у животных) путем расщепления гликозидных связей между 1-м и 4-м атомами углерода. Различают альфа-А. (расщепляют связи внутри полисахарида), бета-А. (отщепляют остатки мальтозы от концов полимера) и глюко-А., или гамма-А. (расщепляют полисахарид с образованием свободной глюкозы). А. синтезируются многими микроорганизмами (бактерии, грибы, актиномицеты, дрожжи), животными и растениями. Основными субстратами для действия А. являются крахмал, состоящий из амилозы (см. амилоза) и амилопектина (см. амилопектин), продукты частичного гидролиза крахмала (см. крахмал) и гликоген (см. гликоген). А. широко используются в хлебопекарной, пивоваренной и спиртовой промышленности.

    Толковый биотехнологический словарь. Русско-английский. > амилазы

  • 20 multilogical channel network

    сеть со многими логическими каналами (как правило, такие каналы между источником и получателем информации используются для управления работой сети)

    Англо-русский словарь промышленной и научной лексики > multilogical channel network

См. также в других словарях:

  • силы между многими частицами — daugiadalelės jėgos statusas T sritis fizika atitikmenys: angl. many particle forces vok. Mehrteilchenkräfte, f rus. многочастичные силы, f; силы между многими частицами, f pranc. forces entre plusieurs particules, f; forces interparticules, f …   Fizikos terminų žodynas

  • Различие между языком и диалектом — Проблема «язык или диалект»  проблема, связанная с определением статуса определенной разновидности языка как отдельного языка либо как диалекта какого то языка. Содержание 1 Суть проблемы 2 Социолингвистические критерии …   Википедия

  • Преступление со многими неизвестными — Злочин з багатьма невідомими …   Википедия

  • История и проблема нормализации отношений между Арменией и Турцией — История армяно турецких отношений начинается с IX века, когда тюркские племена огузов начали проникать из Средней Азии в Закавказье. В X XI веках этот процесс усилился. В XI веке Армения была завоевана сельджуками, в XIII веке – монголо… …   Энциклопедия ньюсмейкеров

  • связь пункта со многими пунктами — Связь, обеспечиваемая линиями, например радиорелейными, между одной станцией, расположенной в определенном фиксированном пункте, и рядом станций, расположенных в определенных фиксированных пунктах. (МСЭ R F.592 3). [http://www.iks… …   Справочник технического переводчика

  • система связи пункта со многими пунктами — Система, обеспечивающая соединение между одним конкретным пунктом и более чем одним другим конкретным пунктом (МСЭ R F.1399). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN point to… …   Справочник технического переводчика

  • Притяжения и отталкивания между звучащими телами — Вопрос о действии звуковых волн на различные тела далеко еще не выяснен, хотя и разрабатывался со стороны опыта многими учеными. Наиболее обстоятельные и разнообразные опыты по этому вопросу произведены Дворжаком (Dvorak, 1875 83). Дворжак и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Гадалка (картина, Жорж де Латур, между 1630 и 1639) — Жорж де Латур Гадалка, 1630 1639 Холст, масло. 102 × 123 см музей Метрополитен, Нью Йорк «Гадалка» картина Жоржа де Латура …   Википедия

  • Гадалка (картина Латура, между 1630 и 1639) — Жорж де …   Википедия

  • Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… …   Медицинская энциклопедия

  • Ломоносов, Михаил Васильевич — — ученый и писатель, действительный член Российской Академии Наук, профессор химии С. Петербургского университета; родился в дер. Денисовке, Архангельской губ., 8 ноября 1711 г., скончался в С. Петербурге 4 апреля 1765 года. В настоящее… …   Большая биографическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»